- 7. É. Sh. Matlina and V. V. Men'shikov, The Clinical Biochemistry of Catecholamines [in Russian], Moscow (1967).
- 8. E. V. Naumenko, Neuroendocrinology, 5, 81 (1969).
- 9. V. O. Osinskaya, Biokhimiya, 22, 537 (1957).
- 10. L. A. Us, in: Proceedings of the Eighth Congress of the Ukrainian Physiological Society [in Ukrainian], L'vov (1968), pp. 579-580.
- 11. A. M. Utevskii, in: Catecholamines and their Role in the Regulation of the Functions of the Organism (Biochemistry, Physiology, Clinical Features). Abstracts of Proceedings of a Scientific Conference [in Russian], Moscow (1964), pp. 6-8.
- 12. K. Fuxe and T. Hockfelt, in: Neurosecretion, (ed. by F. Stutinsky) Berlin (1967), pp. 165-177.
- 13. W. F. Ganong, in: Brain-Endocrine Interaction (ed. by K. M. Knigge et al.), Phiebig, Basel (1972), pp. 254-263.
- 14. G. R. Van Loon, U. Scapagnini, R. Cohen, et al., Neuroendocrinology, 8, 257 (1971).
- 15. I. Vermes, D. Molnar, and G. Telegdy, Acta Physiol. Acad. Sci. Hung., 43, 239 (1973).

SEROTONIN CONCENTRATION IN THE HYPOTHALAMUS DURING CHANGES IN PITUITARY THYROTROPIC FUNCTION

V. V. Mamina

UDC 612.814.1:612.441

The serotonin concentration in the hypothalamus was determined in sexually mature male rabbits during changes in pituitary thyrotropic function. No clear parallel was observed between the intensity of the pituitary thyrotropic function and the hypothalamic serotonin concentration. Stimulation of pituitary thyrotropic function by injection of 6-methylthiouracil or by partial thyroidectomy was accompanied by an increase in the serotonin concentration, whereas during aseptic inflammation in the thyroid gland or after a combination of removal of the superior cervical sympathetic ganglia and administration of chlorpromazine, the increase in thyrotropic function occurred without any significant changes in the hypothalamic serotonin concentration.

KEY WORDS: serotonin; hypothalamus; pituitary thyrotropic function.

The hypothalamus differs from other parts of the brain in having a high concentration of serotonin [1-3, 5, 7]. Serotonin is known to participate directly in the hypothalamic regulation of the gonadotropic and adreno-corticotropic functions of the pituitary. The question of its role in the regulation of pituitary thyrotropic function has not been settled. According to Grimm and Reichlin [8], serotonin has an inhibitory action on pituitary thyrotropic function.

The object of this investigation was to examine the role of serotonin in hypothalamic regulation of pituitary thyrotropic function.

EXPERIMENTAL METHOD

Sexually mature male rabbits were used. The serotonin level in the hypothalamus [4, 9] was determined during exposure to factors stimulating or inhibiting pituitary thyrotropic function. The concentration of thyrotropic hormone in the pituitary was estimated from the height of the thyroid epithelial cells of guinea pigs into which a suspension of acetone-treated pituitary glands from the experimental rabbits was injected.

Khar'kov Research Institute of Endocrinology and Hormone Chemistry. (Presented by Academician of the Academy of Medical Sciences of the USSR L. T. Malaya.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 82, No. 7, pp. 772-774, July, 1976. Original article submitted December 23, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$7.50.

TABLE 1. Changes in Serotonin Concentration in Hypothalamus and Thyrotropic Hormone in Pituitary under Different Conditions

Experimental conditions	Number of animals	Serotomin concentration in hypothalamus (in µg/g)		Height of thyroid epithelial cells in (in μ) of test ani- mals	
		$M\pm m$	P	$M\pm m$	P
Intact rabbits (control) 6-methylthiouracil Partial thyroidectomy Aseptic inflammation of thyroid gland Chlorpromazine Chlorpromazine + removal of superior cervical sympathetic ganglia	5 5 7 7 6 5	0,75±0,034 1,12±0,142 1,24±0,114 0,88±0,197 0,48±0,065 0,44±0,039	<0,05 <0,001 >0,1 <0,02 <0,01	8,09±0,079 9,69±0,099 9,30±0,095 9,31±0,10 7,98±0,069 8,60±0,085	<0,001 <0,001 <0,001 >0,1 <0,001
Chlorpromazine + stimulation of superior cervical sympathetic ganglia Chlorpromazine + partial thyroidectomy	6 11	0,76±0,116 0,73±0,036	>0,1 >0,1	8,13±0,066 8,14±0,073	>0,1 >0,1

EXPERIMENTAL RESULTS

The height of the thyroid epithelial cells in the recipient guinea pigs after receiving an injection of suspension of pituitary glands from rabbits receiving 6-methylthiouracil or partially thyroidectomized rabbits was much higher than after injection of a pituitary suspension from intact animals (Table 1).

Although in both series of experiments the serotonin concentration in the hypothalamus of the rabbits rose sharply, no parallel could be established between the intensity of pituitary thyrotropic function and the hypothalamic serotonin concentration. Moreover, in aseptic inflammation of the thyroid gland produced by passing a viscose thread through the hyroid parenchyma, the pituitary thyrotropic function of the rabbits was greatly increased, whereas there was virtually no change in the serotonin concentration in the hypothalamus. Conversely, after administration of chlorpromazine (especially combined with cervical sympathectomy) the hypothalamic serotonin concentration fell sharply whereas the pituitary thyrotropic hormone level either remained normal or increased. In response to a combination of chlorpromazine with stimulation of the superior cervical sympathetic ganglia or with partial thyroidectomy, the hypothalamic serotonin concentration and the intensity of pituitary thyrotropic function remained unchanged.

Under different conditions [6] serotonin can evidently have either an inhibitory or an activating influence on the activity of different neurons [2], including hypothalamic neurons responsible for production of thyrotropin-releasing hormone.

LITERATURE CITED

- 1. L. S. Vassalyk and D. V. Kolesov, Pediatriya, No. 8, 81 (1967).
- 2. E. A. Gromova, Serotonin and its Role in the Body [in Russian], Moscow (1966).
- 3. M. S. Konstantinova, Zh. Évol. Biokhim Fiziol., 7, No. 2, 213 (1971).
- 4. V. I. Kulinskii and L. S. Kostyukovskaya, Lab. Delo, No. 7, 390 (1969).
- 5. E. V. Naumenko, Central Regulation of the Pituitary-Adrenal Complex [in Russian], Leningrad (1971).
- 6. G. L. Shreiberg, in: The Physiology and Pathophysiology of the Hypothalamus [in Russian], Moscow (1966), pp. 30-38.
- 7. D. Bogdansky, A. Pletcher, B. Brodie, et al., J. Pharmacol. Exp. Ther., 117, 82 (1956).
- 8. J. Grimm and B. Reichlin, Endocrinology, 93, 626 (1973).
- 9. S. Snyder, J. Axelrod, and M. Zweig, Biochem. Pharmacol., 14, 831 (1965).